Gustatory neural responses to umami taste stimuli in C57BL/6ByJ and 129P3/J mice.

نویسندگان

  • Masashi Inoue
  • Gary K Beauchamp
  • Alexander A Bachmanov
چکیده

In long-term two-bottle tests, mice from the C57BL/6ByJ (B6) strain drink more monosodium L-glutamate (MSG) and inosine-5'-monophosphate (IMP) compared with mice from the 129P3/J (129) strain. The goal of this study was to assess the role of afferent gustatory input in these strain differences. We measured integrated responses of the mouse chorda tympani and glossopharyngeal nerves to lingual application of compounds that evoke umami taste in humans: MSG, monoammonium L-glutamate (NH(4) glutamate), IMP and guanosine-5'-monophosphate (GMP) and also to other taste stimuli. Chorda tympani responses to MSG and NH(4) glutamate were similar in B6 and 129 mice. Chorda tympani responses to IMP and GMP were lower in B6 than in 129 mice. Responses to umami stimuli in the glossopharyngeal nerve did not differ between the B6 and 129 strains. Responses to MSG, IMP and GMP were not affected by sodium present in these compounds because B6 and 129 mice had similar neural taste responses to NaCl. This study has demonstrated that the increased ingestive responses to the umami stimuli in B6 mice are accompanied by either unchanged or decreased neural responses to these stimuli. Lack of support for the role of the chorda tympani or glossopharyngeal nerves in the enhanced consumption of MSG and IMP by B6 mice suggests that it is due to some other factors. Although results of our previous study suggest that postingestive effects of MSG can affect its intake, contribution of other gustatory components (e.g. greater superficial petrosal nerve or central gustatory processing) to the strain differences in consumption of umami compounds also cannot be excluded. Strain differences in gustatory neural responses to nucleotides but not glutamate suggest that these compounds may activate distinct taste transduction mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice.

Recent studies have shown that the T1R3 receptor protein encoded by the Tas1r3 gene is involved in transduction of sweet taste. To assess ligand specificity of the T1R3 receptor, we analyzed the association of Tas1r3 allelic variants with taste responses in mice. In the F2 hybrids between the C57BL/6ByJ (B6) and 129P3/J (129) inbred mouse strains, we determined genotypes of markers on chromosom...

متن کامل

Bursting by taste-responsive cells in the rodent brain stem.

Neurons that fire in bursts have been well-characterized in vision and other neural systems, but not in taste systems. We therefore examined whether brain stem gustatory neurons fire in bursts during spontaneous activity and, if so, whether such cells differ from nonbursting cells in other characteristics. We looked at neurons in the nucleus of the solitary tract (NST) of C57BL/6ByJ (B6) and 12...

متن کامل

Taste-evoked responses to sweeteners in the nucleus of the solitary tract differ between C57BL/6ByJ and 129P3/J mice.

C57BL/6ByJ (B6) and 129P3/J (129) mice have different alleles of Tas1r3, which is thought to influence gustatory transduction of sweeteners, but studies have provided conflicting results regarding differences in sweetness perception between these strains. Single-unit taste-evoked activity was measured in the nucleus of the solitary tract (NST) in anesthetized B6 and 129 mice to address this con...

متن کامل

Gustatory neural responses to umami stimuli in the parabrachial nucleus of C57BL/6J mice.

Umami is considered to be the fifth basic taste quality and is elicited by glutamate. The mouse is an ideal rodent model for the study of this taste quality because of evidence that suggests that this species, like humans, may sense umami-tasting compounds as unique from other basic taste qualities. We performed single-unit recording of taste responses in the parabrachial nucleus (PbN) of anest...

متن کامل

T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical senses

دوره 29 9  شماره 

صفحات  -

تاریخ انتشار 2004